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ABSTRACT

The theory of reaction rates gives approximations of the type 4 T° e */*7 for
rate constants. In thermal analysis the case where & = 0 is used in kinetic calculations.
However, if & is regarded as a variable, treatment of the non-isothermal kinetic
equations is not more complicated thaxz in the special case of b = 0. In this paper Padé
approximations, described in the literature of the special functions, and Legendre’s
continued fractions are proposed for evaluation of the AfT* ¢~ /%7 dT integrals.
The Coats-Redfern type methods for the determination of the kinetic parameters are
discussed analysing the errors of approximation involved in their deduction. On this
basis a modified parameter estimation scheme is proposed.

INTRODUCTION

In thermal analysis the widely used expression for the rate constant (k) is
k= Ae ERT )]
Application of eqn. (1) seems to be the most snitable way of describing the overall

kinetics of reactions having a complex mechanism. The theory of unimolecular
reactions, however, leads to the approximation

k= ATe EIRT 2)
while in the case of a solid 4+ gas — ... type bimolecular reaction the expression
k= A TO-S e—ElRT (3)

secms 0 be more correct than eqn. (1). (Here the factor T°-° is connected with the
number of gas molecules colliding with the reaction surface in unit time).

In thermoanalytical calculations the simplified eqn. (1) is used when uni-
molecular decomposition or a solid X gas — ... type reactivn is claimed to be rate
determining. Since eqns. (2) and (3) can be well approximated by eqn. (1) in 2 not too
wide range and values of E and 4 corresponding to eqns. (2) and (3) can be calculated
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from eqn. (1), the replacement of eqns. (2) and (3) by equn. (1) is acceptable. But this
replacement brings no practical advantages. It can be shown that the application of
eqns. (2) and (3) in the non-isothermal kinetics is just as simple (or justas complicated)
as that of eqn. (I). It was shown recently by Gorbachey that the same equations, the
same approximations and the same parameter estimation methods can be used in all
three cases. A similar way will be followed in the present paper, too. Methods described
in the literature for the special functions will be proposed for evaluation of the integral

f LdT = J A TP ERT g )

These approximations may be useful in theoretical deductions, in kinetic simulation
and in graphical or computerized determination of kinetic parameters.

Following the conventions oi numerical analysis, the error of the approxima-
tions proposed will be estimated by error estimation formulae. As regards the deter-
mination of E and A, generalization of the widely used Coats—Redfern iypc methods
will be discussed paving particular atiention to improvement of accuracy.

INTEGRATION OF A(T)

Intreducing the new variable 3 = Ef/RT and the notation s = b - 2 we have

T x
j- T =~ ERT 4T = (E/R)"™* .‘-y" e 7dy (3)
1] y
The integral on the right hand side is denoted by p.(3)
‘1;“-
p) = |y e ay ©

d ]

In ref. 2 Padé approximations are given for this type of integral. The first Padé
approximation is
P.) & ¥ I eI + 5) 7! ™
The equivalent of this formula was also deduced by Gorbachev® and by Doyle? at
s =2
The second Padé approximation is

pl =y ter Y EL ®

. y¥+s+1
In the s = 2 case eqn. (8) corresponds to the first term of the series proposed by
Van Teis®.

The Padé approximations of integral (6) are equivalent to the truncated parts of
the following continued fractions due to Legendre?
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It is not too complicated to estimate the error caused by the truncation of egn. (9).
(Simple differential calculus can be applied regarding ithe continued fraction as a
function of a function of a function . . . etc.). In this way the relative error of egqns. (7)
and (8) was found to bc approximately

— §

(}‘-E-s)(y—.Ls-;-l)znsy- (10)
and

s(s + 1) ~ 2 w3 .
I (1i)
respectively.

In thermoanalytical studies y is not less than 10. At s = 2 and y = 10 the left
hand sides of eqns. (10) and (11) are equal to —0.013 and 0.004 respectively. (The
actual relative errors of eqns. (7) and (8) are —0.013 and 0.005 at s = 2 and y = 10).
At a more usual y, let vs say at y = 30, these values are equal to —0.0019 and 0.0002
respectively.

In computer calculations a higher accuracy can be achieved through eqn. (9).
Thus if eqn. (9) is truncated at the sixth sign of division, the relative error of the
formuia will be approximately

—6s(s+ 1)(s+ 2)

O+ +s+ Do +s+ 2P0 +s5+3)
At y = 10 this expression indicates relative errors of about 105 at s = 2, 2.5 and 3.
At y = 30 this value is about 1077,

An alternative way of calculating the p,(y) integrals is through the application
of the following expansion

(12)

N 1 —Fa—Y . | a; . as \
P0) =y bTrH+U+DU+$T@+D@+QU+$ ”)

(13)

This type of series is well known in the literature of thermal analysis from the work of
Van Krevelen and coworkers® who used the corresponding expansion of p;(y) given
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TABLE 1

COEFFICIENTS FOR EQXN. (13)

x ax = a3 ay as 25

20 — 20 40 — 100 300 — 108.0 4440
25 — 25 625 — 18.125 61.563 — 242.656 1088.516
3.0 — 30 90 — 300 114.0 — 4920 2383.0

by Schiomlich and expressed p,(y) through p,(y) by partial integration. However,
expansion {13) can be applied directly for p.(y) as well as for any other p,(y). The
method for determination of the constants g, can be found in ref. 6. The g, calculated
in this way are given for s = 2, 2.5 and 3 in Table 1 for actual kinetic calculations.
The relative error of the formula can be estimated by the first omitted term in the
series.

Comparison of eqns. (%) and (13) shows that Legendre’s continued fractions
give more accurate approximations within the same time of computation. (In this
comparisoa egn. (13) is assumed to be evalvated in a Homner type arrangement to
make the calculation faster). A practical advantage of Legendre’s method is the
lack of the speciiic coefficient a,. Thus at proper computer programming the high
precision evzluation of any p.(y) can be carried out by a single program line. However,
the choice between eqns. (3) and (13) is a matter of taste.

COATS—REDFERN TYPE LINEARIZATION

At this point evaluation of the kinetic parameters from TG curves will be
considered. Let x be the fraction reacted, then the usual kinetic equation of thermal
analysis has the form

dx/d: = k(T)(x) (i4)
where ¢t = time and k(7") = rate constant. Integrating eqn. (14) at constant d7°/df = a

we have

x T
dx 1
X) = '.— = — f k T 1
90 = | s =5 | MDd (15
L) To
Since usually k = 0aL 7 < T, T, may be regarded as zero. Using eqns. (3) and (6),
eqn. (15) can be written in the form

a

3w =2 (£) o as)

From eqn. (8) one can sec that p; can be considered as a product of ¥~ * e™” with a
factor which changes slowly with y. Let us denote this factor by g,())
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0 =y e q,(v) 17)
Substituting eqn. (17) in eqn. (16} and remembering that y = Ef/RT we get

_ 4R -
g(x) = aE T ™ gy) (18)
or in logarithmic form

ta 3) _ 4, AR

T aE
If the small term (In q,) is neglected a generalization of Coats and Redfern’s method”
is obtained. If (In g.) is regarded as constant and is approximated through eqn. (7)

then Gorbachev’s eqn. (1) is obtained. If higher precision is required, (In ¢g,) may be
approximated as

+Ing, — »y (19)

Ing, = ¢o -+ oy 0)

by expanding it in a Taylor series around a point ¥. In this way E and 4 can be
evaluated in the fcllowing steps:

(1) The values of In g(x)/T* obtained from experimental data x and T are
approximated by a linear function of 1T

g(x 1

)
In = B, + B, — 21
Vi ° 1 h

(2) Using Coats and Redfern’s method a first approximation of E is determined
through the formula

B, = — & (22)

(3) A point T is chosen somewhere in the middle of the temperature interval
of decomposition and using the first approximation of E the corresponding § = EfRT
is calculated. (In g,) is expanded into a Taylor series around this point ¥. The corre-
sponding coefficients ¢o and ¢, can be calculated from eqn. (8) which gives the
approximation g, = (¥ + 1/(y¥ + s + 1). In this way

h)

- 23
TG EIDG s+ D 23)
c =ln——‘]7'+1 —c ¥ 4
° y+s+1

(4) Knowing the values of ¢, and ¢, £ and 4 can be determined immediately
from the equations

By=— (1 —c)p @5)
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22t e @6)
(These relations follow directly from eqns. (19), (20) and (21).)

The corrected value of E determined in this way may differ by a few per cent at
the most from the vaiue of E provided by Coats and Redfern’s or by Gorbachev’s
method. As regards the values of 4, however, the complete omission of the term
(In g,) may cause an error of up to 50%; while neglection of ¢,y in eqn. (24) may
result in an error of 10-3097.

Bo-_—ln

THE ERROR OF LINEARIZATION

In this paragraph deviation of the theoretical In g(x)/7T” vs. 1/T plots from the
nerfect straight line will be considered. Using the error formula of the Taylor series
we have for the error of lineanization

1 a0V _ gy @
2 ay

where y’ is an unknown point between y and y'. Approximating ¢, through eqn. (8) as
above, d°In g./dy" is found to be about —2sfy>. If the greatest value of |y — 7]
ansing in the given parameter estimation is denoted by 4y, then according to eqn. (19)
the dln g(x)'7T” comresponding to the 4y is about dy. The relative error of the lineari-
zaton is the guotient of expression (27) and 4In g(x)/T™. In this way it is approxi-
mately

sy~ 4y (28)

Regarding actual valuees of £and T it can be seen that the term (28) is of the order of
[0~ 2 at the most

OTHER LINEARIZATICN TECHNIQUES

Some widely used and well elaborated kinetic evaluation methods®- ? are based
on the linearity of the In g(x) vs. 1/T plots. Though at usual values of £ and T these
plots are fairly linear, it will be shown that the error of linearization is considerable,
higker than that of the In g(x);T™ vs. 1T plots and at y < 20 this linearization might
become deficient in the distinction between the possible mechanism hypotheses
It follows from eqns. (i6) and (17) that

-1
lng(x):h‘:-g—(—g-) —slny +Ilng, — y 29

Now that the (— s In y <+ In g,) function must be linearized, the errcr term is about

1 4
2 dy?

(—shhy + Ing)(Ay)Y = (%s y - S.V") Ay’ (30)
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According to eqn. (29) the change of In g(x) in a given interval Ay is about

Alng) = 4 (= siny +Ing, — DAy = — Ay D)

In this way the relative error of linearization is approximately
(—is5y % + 5y )4y (32)

Note that eqn. (32) is about y times greater than the term (28). At small y values
eqn. (32) indicates errors of about 19 Since the distinction between different
reaction mechanisms is sometimes based on exiremely small difierences in the
correlation coefficients?, a relative error of 0.5-1 % might be important. However, at
usual values of y eqn. (32) has sufficiently small values.

The parameter estimation method proposed in the present paper (eqns. (21)-
(26)) may be used with the In g{x) = By, - B, 1/T linearization, too.

The only difference is that eqns. (22), (25) and (26) must be replaced by the
following

E
Bo=— 5 s 33)
E
A E s—1 ) _ "
Bo =ln—;—(T +lny— i +Co (35)
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